منابع مشابه
Invariant Einstein Metrics on Flag Manifolds with Four Isotropy Summands
A generalized flag manifold is a homogeneous space of the form G/K, where K is the centralizer of a torus in a compact connected semisimple Lie group G. We classify all flag manifolds with four isotropy summands by the use of t-roots. We present new G-invariant Einstein metrics by solving explicity the Einstein equation. We also examine the isometric problem for these Einstein metrics. 2000 Mat...
متن کاملIsometry Groups and Geodesic Foliations of Lorentz Manifolds. Part Ii: Geometry of Analytic Lorentz Manifolds with Large Isometry Groups
This is part II of a series on noncompact isometry groups of Lorentz manifolds. We have introduced in part I, a compactification of these isometry groups, and called “bipolarized” those Lorentz manifolds having a “trivial ” compactification. Here we show a geometric rigidity of non-bipolarized Lorentz manifolds; that is, they are (at least locally) warped products of constant curvature Lorentz ...
متن کاملEquivalence among isotropy subgroups of space groups.
The Landau theory' of continuous phase transitions provides a powerful tool for understanding transitions between solid phases whose symmetries have a group-subgroup relationship. In the Landau theory, the thermodynamic free energy F of the crystal is written as a function of an order parameter Q. In the high-symmetry phase, the minimum of F is at Q = 0. In the low-symmetry phase, the minimum o...
متن کاملOn Isotropy Irreducible Riemannian Manifolds by Mckenzie Wang And
A connected Riemannian manifold (M,g) is said to be isotropy irreducible if for each point p ∈ M the isotropy group Hp, i.e. all isometries of g fixing p, acts irreducibly on TpM via its isotropy representation. This class of manifolds is of great interest since they have a number of geometric properties which follow immediately from the definition. By Schur’s lemma the metric g is unique up to...
متن کاملCr Manifolds with Noncompact Connected Automorphism Groups
The main result of this paper is that the identity component of the automorphism group of a compact, connected, strictly pseudoconvex CR manifold is compact unless the manifold is CR equivalent to the standard sphere. In dimensions greater than 3, it has been pointed out by D. Burns that this result follows from known results on biholomorphism groups of complex manifolds with boundary and the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: advg
سال: 2011
ISSN: 1615-7168,1615-715X
DOI: 10.1515/advgeom.2010.040